Extending FreelPA

Alexander Bokovoy <abokovoy @ edhat . conP

Table of Contents

[F g1 (8 oi [oo RSP PTTRSPPPTT 1
HIGN TEVEL GESION ..o ettt e e et e et e e e b 1
Core PIUG-IN FrAMEWOTKue e ettt e et e e et e e et e e e aba e e eaaans 2
NBIME SPACE ...t et 3
ParaMELEIS ... e 3
L0 o] ol £ TP TUPPRTRUPPIN 5
ExXtending eXiSting OIJECEuiiiiii e 11
Extending eXiSting MELNOMuuiiiii et 11
WWED UL o ettt e 13
BB S . 15
NIt S ..ttt e e et 15
ComMEANd lINE TO0IS ...t et ettt ettt e et et e eeaa e eaaas 17
Extending command [iN€ ULHTITYcooouuiiiiiiiie e 19
L o1 PSPPI 20
PLatform POITADITILY e e e et e et e et e ettt e et e e aee 20
AULNCONTIG CIBSS ..t e e e eaaans 21
PLatfOrMSEIVICE CIASSvu e et 21
Enabling new platform Provider ... 22
Introduction

FreelPA is an integrated security information management solution. There is a common framework written in
Python to command LDAP server provided by a 389-ds project, certificate services of aDogtag project, andaMIT
Kerberos server, aswell as configuring various other servicestypically used to maintain integrity of an enterprise
environment, like DNS and time management (NTP). The framework is written in Python, runs at a server side,
and provides access via command line tools or web-based user interface.

Ascore parts of theframework areimplemented as pluggable modules, it is possibleto extend Freel PA on multiple
levels. This document attempts to present general ideas and ways to make use of most of extensibility pointsin
Freel PA.

For information management solutions extensibility could mean multiple things. Information objects that are
managed could be extended themselves or new objects could be added. New operations on existing objects might
become needed or certain aspects of an object should be hidden in a specific environment. All these tasks may
require quite different approaches to implement.

Following chapterswill cover high-level design of Freel PA and diveinto details of its coreframework. Knowledge
of Python programming language basics is required. Understanding LDAP concepts is desirable, though it is not
required for simple extensions as Freel PA attempts to provide sufficient mapping of LDAP concepts onto less
complex structures and Python objects, lowering a barrier to fine tune Freel PA for the specific use cases.

High level design

Freel PA core iswritten in Python programming language. The datais stored in LDAP database, and client-server
paradigm is used for managing it. A Freel PA server instance runs its own LDAP database, provided by 389-ds
project (formerly FedoraDirectory Server). A singleinstance of LDAP database correspondsto the single Freel PA
domain. Access to all information stored in the database is provided via Freel PA server core which isrun as a
simple WSGI application which uses XML-RPC and JSON to exchange requests with its own clients.

Extending
Freel PA

Multiple replicas of the Freel PA instance can be created on different servers, they are managed with the help of
replication mechanisms of 389-ds directory server.

AsLDAP database is used for data storage, LDAP's Access Control Model is used to provide privilege separation
and K erberostickets are used to pass-through assertion of authenticity. AsKerberosserver isusingthe same LDAP
database instance, use of K erberostickets allowsto perform operations against the database on the server if aclient
is capable to forward such tickets via communication channels selected for the operation.

When Freel PA client connects to Freel PA server, a Kerberos ticket is forwarded to the server and operations
against LDAP database are performed under identity authenticated when the ticket wasissued. As LDAP database
also uses Kerberosto establish identity of aclient, Access Control Information attributes can be used to limit what
entries could be accessed and what operations could be performed.

The approach allows to delegate operations from a Freel PA client to the Freel PA server and in general gives
Freel PA server ability to interact with any Kerberos-aware service on behalf of the client. It also allows to keep
Freel PA client side implementation relatively light-weight: all it needs to do is to be able to forward Kerberos
ticket, process XML-RPC or JSON, and present resulting responses to the user.

Besides run-time core, Freel PA includes few configuration tools. These tools are split between server and client.
Server-side tools are used when an instance of Freel PA server is set up and configured, while client-side tools
are used to configure client systems. While the server tools are used to configure LDAP database, put proper
schemadefinitionsin use, create Kerberos domain, Certificate Authority and configure all corresponding services,
client side is more limited to configure PAM/NSS modules to work against Freel PA server, and make sure that
appropriate information about the client host is recorded in Freel PA databases.

Core plug-in framework

Freel PA core definesfew fundamentals. These are managed objects, their properties, and methodsto apply actions
to the objects. Methods, in turn, are commands that are associated with a specific object. Additionally, there are
commands that do not have directly associated objects and may perform actions over few of those. Objects are
stored using data store represented by a back end, and one of most useful back endsis LDAP store back end.

Altogether, set of Obj ect, Property, Met hod, Command, and Backend instances represent application
programming interface, API, of FreelPA core framework.

In Python programming language obj ect oriented support isimplemented using afairly simple concept that allows
to modify instances in place, extending or removing their properties and methods. While this concept is highly
useful, in security-oriented frameworks ability to lock down and trace origins of changesisalsoimportant. Freel PA
core attempts to implement locking down feature by artificially making instances of foundation classes read-
only after their initialization has happened. If an attempt to modify object happens after it was locked down, an
exception is thrown. There are many classes following this pattern.

For example, i pal i b. front end. Command class is derived from i pal i b. front end. HasPar am
class that derives from i palib. plugabl e. Pl ugin class which, in turn, is derived from
i palib. base. ReadOnl y class.

As result, every command has typed parameters and can dynamically be added to the framework. At the same
time, one cannot modify the properties of the command accidentally once it is instantiated. This protects from
modifications and enforces true nature of the commands: they cannot have state that is carried over across multiple
calls to the same command unless the state is changing globally the whole environment around.

Environment al so holds information about the context of execution. The context isimportant part of the Freel PA
framework asit al so defineswhich methods of the command instance are called in order to perform action. Context
initself is defined by the environment which gives means to catch and store certain information about execution.
As with commands themselves, once instantiated, environment cannot be changed.

By default, for primary Freel PA use, there are three major contexts defined: server, client, and installer/updates.

server context plugins are registered and communicate with clients
via XML-RPC and JSON listeners. They validate

Extending

Freel PA
any arguments and options defined and then execute
whatever action they supposed to perform
client context plugins are used to validate any arguments and
options they take and then forward the request to the
Freel PA server.
installer context, updates context plugins specific to installation and update are loaded

and registered. This context can be used to extend
possible operations during set up of Freel PA server.

A user may define any context they want. Freel PA names server context as 'ser ver '. When using the i pa
command linetool thecontextis'cl i . Server installationtools, inparticular,'i pa- | dap- updat er ', usespecial
‘'updat es' context to load specialized plugins useful during update of the installed Freel PA server.

Because these utilities use the same framework they will do the same validation, set default values, and perform
other basic actionsin al contexts. This can help to save a round-trip when testing for invalid data. However, for
client-server communication, the server is always authoritative and can re-define what the client has sent.

Name space

Freel PA has one specid type of read-only objects: NarmeSpace. NaneSpace class gives an ordered, immutable
mapping object whose values can also be accessed as attributes. A NaneSpace instance is constructed from
iterable providing itsmembers, which are simply arbitrary objectswith nane attribute. Thisattribute must conform
to two following rules;

* Itsvalue must be unique among the members of the name space
* Itsvalue must passthecheck _nane() functioni pal i b. base module.

check_name() function encodesasimplerule of alower-case Python identifier that neither starts nor endswith
an underscore. Actual regular expression that codifies this rule is NAME_REGEX withini pal i b. const ant s
module.

Once name space is created, it locks itself down and becomes read-only. It means that while original objects
accessed through the name space might change, the referencesto them vianame spacewill stay intact. They cannot
be removed or changed to point to other objects.

The name spaces are used widely in Freel PA core framework. As mentioned earlier, APl includes set of objects,
commands, and methods. Objects include properties that are defined before lock-down. At object's lock-down
parameters are placed into a name space and that locks them down so that no parameter specification can change.
Command's parameters and options also locked down and cannot change once command instance is instantiated.

Parameters

Par amclassis used to define attributes, arguments, or options throughout Freel PA core framework. The Par am
base class is not used directly but rather sub-classed to define properties like passwords or specific data types
likeStr orlnt.

Instances of classes inherited from Par ambase class give uniform access to the properties required to command
lineinterface, Web Ul, and internally to Freel PA code. Following properties are most important:

name name of the parameter used internally to addressthe parameter in Python code. The name
could include specia characters to designate a Par amspec.

cli_name optional name of the parameter to use in command line interface. Freel PA's CLI sets a
mechanism to automatically translate from acommand line option name to a parameter's
name if cli_name is specified.

label A short phrase describing the parameter. It is used on the CLI when interactively
prompting for the values, and as a label for the form inputs in the Web Ul. The label
should start with aninitial capital letter.

Extending
Freel PA

doc

required

multivalue

A long description of the parameter. It is used by the CLI when displaying the help
information for acommand, and as an extrainstruction for the form input on the Web UI.
By default the doc isthe same asthe label but can be overridden when aPar aminstance
is created. As with label, doc should start with an initial capital letter and additionally
should not end with any punctuation.

If setto Tr ue, meansthis parameter isrequired to supply. All parametersare required by
default and that means that required property should only be specified when parameter
isnot required.

if set to Tr ue, means this parameter can accept a Python's tuple of values. By default
al parameters are single-valued.

When parameter name hasany of ?,* , or + characters, it istreated as parameter spec and isused to specify whether
parameter is required, and should it be multivalued. Following syntax is used:

Spec Name Required Multivalue
'var' 'var' True False
'var? var' Fase False
‘var' 'var' Fase True
‘var+' 'var' True True

Access to the value stored by the Par amclass is given through a callable interface:

age = Int('age',

print age(10)

| abel =" Age', defaul t=100)

Following parameter classes are defined and used throughout Freel PA framework:

Bool

boolean parametersthat are stored in Python'sbool type, therefore, they return either Tr ue or Fal se

value. However, they accept 1, Tr ue (Python boolean), or Unicode strings ‘1", 't r ue' and 'TRUE' as
truth value, and 0, Fal se (Python boolean), or Unicode strings 0, 'f al se’, and 'FALSE' asfalse.

Flag

boolean parameters which aways have default value. Property default can be used to set the value.

Defaultsto Fal se:

ver bose =

Int

Float

Bytes
Sr

Fl ag(' verbose',

def aul t =Tr ue)

integer parameters that are stored in Python's int type. Two additional properties can be
specified when constructing | nt parameter:

minvalue minimal value that this parameter accepts, defaultsto M NI NT
maxvalue maximum value this parameter can accept, defaults to MAXI NT

floating point parameters that are stored in Python's float type. Fl oat has the same two
additional properties as | nt . Unlike I nt , there are no default values for the minimal and
maximum boundaries.

a parameter to represent binary data.

parameter representing a Unicode text. Both Bytes and Str parameters accept following
additional properties:

minlength minimal length of the parameter
maxlength maximum length of the parameter
length length of the parameters

Extending

Freel PA
pattern regular expression applied to the parameter's value to
check its validness
pattern_errmsg an error message to show when regular expression check
fals
|ASStr string parameter as defined by RFC 4517. It means all characters of the string must be ASCI|
characters (7-bit).
Password parameter to store passwordsin Pythonuni code type. Password hasone additional property:
confirm boolean specifying whether password should be confirmed when entered.
The confirmation is enabled by default.
Enum parameter can have one of predefined values that are specified with values property which is

aPython'st upl e.
For most common case of enumerable strings there are two parameters:
BytesEnum parameter value should be one of predefined uni code strings

SrEnum equivalent to BytesEnum. Originally BytesEnumwas stored in Python'sst r classinstances
but to be aligned with Python 3.0 changes both classes moved to store asuni code.

When morethan onevalue should be accepted, thereisList parameter that allowsto providelist of strings separated
by a separator, default to',". Also, the List parameter skips spaces before the next item in the list unless property
skipspace is set to False:

nanes = List('names', separator=',', skipspace=True)
nanes_list = nanes(u' John Doe, John Lee, Brad Me')

names_list is (u" John Doe', u' John Lee', u' Brad Mye')
nanes = List('names', separator=',', skipspace=Fal se)
nanes_list = nanes(u' John Doe, John Lee, Brad Me')

names_list is (u John Doe', u' John Lee', u'" Brad Mpe')

Objects

The data manipulated by FreelPA is represented by an Object class instances. Instance of an Object class is
a collection of properties, accepted parameters, action methods, and a reference to where this object's data is
preserved. Each object also has a reference to a property that represents a primary key for retrieving the object.

In addition to properties and parameters, Object class instances hold their labels to use in user interfaces. In
practice, there are few differencesin how labels are presented depending on whether it is command line interface
or aWeb Ul, but they can beignored at this point.

To be useful, all Object sub-classes need to override t akes_par amproperty. This is where most of flexibility
of FreelPA comes from.

takes param attribute

Properties of every object derived from Object class can be specified manually but FreelPA gives a handy
mechanism to perform descriptive specification. Each Qbj ect class has Obj ect . t akes_par am attribute
which defines a specification of all parameters this object type is accepting.

Next example shows how to create new object type. We create an aguarium tank by defining its dimensions and
specifying which fish isliving there.

1: fromipalib inmport api, Object
2: class tank(Object):
3: t akes_params = (

Extending

Freel PA
4 StrEnun(' speci es*', | abel =u' Speci es', doc=u'Fi sh species’,
5: val ues=(u' Angel fish', u Betta', u Cchlid , u Firenouth')),
6: Fl oat (' height', |abel =u' Height', doc=u' height in nm, default=400.0),
7: Float("width', |abel=u"Wdth', doc=u'width in nm, default=400.0),
8: Fl oat (' depth', | abel =u' Depth', doc=u'Depth in mm, default=300.0)
9:)
10:

11: api.register(tank)

12: api.finalize()

13: print list(api.Object.tank. parans)

14: # ['species', '"height', "width', 'depth']

First we define new class, t ank, that takes four parameters. On line 11 we register the class in Freel PA's AP
instance, api. This createst ank object in api . Obj ect name space. Many objects can be added into the AP
up until api . finalize() iscaledaswedoonline12.

When api . finalize() iscalled, al name spaces are locked down and all registered Python objects in those
name spaces are a so finalized which in turn locks their structure down as well.

As result, once we have finalized our APl instance, every registered Object can be accessed through
api . Obj ect . <nane>. Our aguarium tank object now has defined par ans attribute which is a name space
holding all Par aminstances. Thus we can introspect and see which parameters this object has.

At this point we can't do anything reasonable with our aguarium tank yet because we haven't defined methods to
handleit. In addition, our object isn't very useful asit does not know how to store the information about aguarium's
dimensions and specieslivingin it.

Object methods

M ethods perform actions on the associated objects. The association of methodsand objectsis done through naming
convention rather than using programming language features. Freel PA expects methods operating on an object
<nane> to be named <nane>_<act i on>:

cl ass tank_creat e(Met hod):
def execute(self, **options):
create new aquarium tank

api . register(tank_create)

cl ass tank_popul at e(Met hod) :
def execute(self, **options):
popul ate the aquariumtank with fish

api . regi ster(tank_popul at e)

As can be seen, each method is a separate Python class. This approach allows to maintain complexity of methods
isolated from each other and from the complexity of the objectsand their storage which is probably most important
aspect due to LDAP complexity overall.

The linking between objects and their methods goes further. All parameters defined for an object, may be used
as arguments of the methods without explicit declaration. This means api . Met hod. t ank_popul at e will
accept speci es argument.

Methods with storage back ends

In order to store the information, Cbj ect class instances require a back end. FreelPA defines severa
back ends but the ones that could store data are derived of i pal i b. CrudBackend. CRUD, or Create,
Retrieve, Update, and Delete, are basic operations that could be performed with corresponding objects.

Extending
Freel PA

i pal i b. crud. CrudBackend isanabstract class, it only definesfunctionsthat should be overriddenin classes
that actually implement the back end operations.

As back end is not used directly, FreelPA defines methods that could use back end and operate on object's
defined by certain criteria. Each method is defined as a separate Python class. As CRUD acronym suggests, there
are four base operations: i pal i b. crud. Create,ipalib.crud. Retrieve,ipalib.crud. Update,
i pal i b. crud. Del et e.Inaddition, methodi pal i b. crud. Sear ch alowstoretrieveall entriesthat match
agiven search criteria.

When objects are defined and the back end is known, methods can be used to manipulate information stored by
the back end. Most of useful operations combine some of CRUD base operations to perform their tasks.

In order to support flexible way to extend methods, FreelPA gives specia treatment for the LDAP
back end. Methods using LDAP back end hide complexity of handling LDAP queries and alow to
register user-provided functions that are called before or after method. This mechanism is defined
by ipalib.plugins.baseldap.Callbackinterface and used by LDAP-aware CRUD classes, LDAPCr eat e,
LDAPRetri eve, LDAPUpdate, LDAPDelete, and an anadogue to i palib.crud. Search,
LDAPSear ch. There are also classes that define methods to operate on reverse relationships between
objects in LDAP to allow addition or removal of membership information both in forward and reverse
directions: LDAPAddMenber, LDAPModMenber, LDAPRenoveMenber, LDAPAddRever seMenber,
LDAPMbdRever seMenber , LDAPRenpveRever seMenber .

Most of CRUD classesarebased onaL DAPQuer y classwhich generalizes concept of querying arecord addressed
with a primary key and supports JSON marshalling of the queried attributes and their values.

Base LDAP operation classesimplement everything needed to create typical methods to work with self-contained
objects stored in LDAP.

LDAPODbject class

A large classof objectsisLDAPODbject. LDAPObject instances represent entries stored in Freel PA LDAP database
instance. They are referenced by their distinguished name, DN, and able to represent complex relationships
between entriesin LDAP like direct and indirect membership.

Any class derived from L DAPODbject needsto re-define few properties so that base class can properly function for
the specific object that is defined by the class. Below are commonly redefined properties:

container_dn DN of the container for this object entries in LDAP.
This one usualy comes from the environment associated
with the APl and by default is populated from the
DEFAULT_CONFI Gof i pal i bs. const ant s. For example,
al accounts are stored under cn=accounts, with users
are under cn=users, cn=account s and groups are under
cn=gr oups, cn=account s. In case of a new object added,
it is reasonable to select its container coordinated to default
configuration.

object_class list of LDAP object classes associated with the object
search_attributes list of attributes that will be used for search

default_attributes list of attributes that are always returned by searches
uuid_attribute an attribute that defines uniqueness of the entry
attribute_members adict defining relations between other objects and this one. Key

is the name of attribute and value is alist of objects this attribute
may refer to. For example, host object defines that menber of
attribute of ahost may refertoahost gr oup, net gr oup,r ol e,
hbacr ul e, or sudor ul e object. In other words, it means that
host could be amember of any of those objects.

Extending
Freel PA

reverse_members a dict defining reverse relations between this object and other
objects. Key is the name of attribute and value is the name of an
object that refers to this object with the attribute. For example,
r ol e object defines that nenber attribute of a pri vil ege
referstoar ol e object.

password_attributes list of pairs defining an attribute in LDAP and a property of a
Python dictionary representing the LDAP object attributes that
will be set accordingly if such attribute existsin the LDAP entry.
Aspasswords haverestricted access, often one needsonly to know
that there is a password set on the entry to perform additional
processing.

relationships a dict defining existing relationship criteria associated with the
object. These are used in Web Ul to alow filtering of objects by
the criteria. The value is defined as a tuple of an Ul label and
two prefixes: inclusive and exclusive that are prepended to the
attribute parameter when options are generated by the framework.
LDAPODbject defines few default criteriaz member, memberof,
memberindirect, memberofindirect, and objects can redefine or
append more. Due to regularity of the design of LDAP objects,
default criteria already makesit possible to apply searches almost
uniformly: one can ask for membership of a user in a group, as
well asfor amembership of arolein aprivilege without explicitly
defining those relationships.

These properties define how translation would go from Python side to and from an LDAP backend.

Asan example, let's see how roleis defined. Thisisfully functioning plugin that provides operations on roles:

1: fromipalib.plugins. baseldap i nport *

2: fromipalib inport api, Str, _, ngettext

3: fromipalib inport Command

4: fromipalib.plugins inport privilege

5:

6: class rol e(LDAPObj ect):

7: e

8: Rol e obj ect.

9: e

10: contai ner_dn = api.env.container_rol egroup

11: object _nane = ('role")

12: object _nane_plural = ('roles")

13: obj ect _class = ['groupofnanes', 'nestedgroup']
14; default _attributes = ['cn', 'description', 'nmenber', 'nenberof',
15: "menberindirect', 'menberofindirect',

16:]

17: attribute nmenbers = {

18: "menber': ['user', 'group', 'host', 'hostgroup'],
19: "menberof': ['privilege'],
20: }
21: reverse_nenbers = {
22: "menber': ['privilege'],
23: }
24: rdnattr="'cn'
25:
26: | abel = ('Roles')
27: | abel _singular = ('Role')
28:
29: t akes_params = (

Extending
Freel PA

30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41
42:
43:
44.
45:
46:
47
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:

Str('cn',
cli _name=' nane',
| abel = (' Rol e name'),
primary_key=True,

),

Str('description',
cli _name=' desc’
| abel = (" Description'),
doc=_("' A description of this role-group'),

).

)

api .register(role)
cl ass rol e_add(LDAPCreat e):

_doc__ = ('"Add a newrole.")

msg_summary = (' Added role "% value)s""')
api . regi ster(rol e_add)
cl ass rol e_del (LDAPDel et e):

_doc__ = ('Delete arole.")

msg_summary = ('Deleted role "% value)s"')
api .register(rol e_del)
cl ass rol e_nmod(LDAPUpdat e) :

_doc__ = ('"Mdify arole.")

msg_summary = ('Modified role "% val ue)s"")
api . regi ster(rol e_nod)
cl ass rol e_find(LDAPSearch):

_doc__ = ('Search for roles.")

msg_summary = ngettext (

"% count)d role matched', ' % count)d rol es matched’

)

api .register(role_find)

cl ass rol e_show(LDAPRetri eve):
_doc__ = ('Display information about a role.")
api . regi ster(rol e_show)

cl ass rol e_add_nenber (LDAPAddMenber) :
_doc__ = ('Add nenbers to a role.")

0

Extending
Freel PA

88: api.register(rol e_add_nenber)

89:

90:

91: class role_renmve_nenber (LDAPRenoveMenber) :

92: _doc__ = _('Renpve nenbers froma role.")
93:

94: api.register(role_renove_nenber)

95:

96:

97: class role_add_privil ege(LDAPAddRever seMenber) :
98: _doc__ = ("Add privileges to arole.")

99:

100: show command = 'rol e_show

101: menber _command = 'privil ege_add_menber’

102: reverse_attr = 'privilege'

103: menber _attr = 'role

104:

105: has_out put = (

106: output.Entry('result'),

107: out put. Qutput (' fail ed'

108: t ype=di ct,

109: doc=_(' Menbers that could not be added'),
110:),

111: out put . Qut put (' conpl et ed’

112: type=int,

113: doc=_("' Nunber of privileges added'),
114:),

115:)

116:

117: api.register(role_add _privil ege)

118:

119:

120: class role_renove_privil ege(LDAPRenoveRever seMenber) :
121: _doc__ = ('Renove privileges froma role.")
122:

123: show command = 'rol e_show

124: menber _command = 'privil ege_renove_nenber’
125: reverse_attr = 'privilege'

126: menber _attr = 'role

127:

128: has_out put = (

129: output.Entry('result'),

130: out put. Qutput (' fail ed'

131: t ype=di ct,

132: doc=_(' Menbers that could not be added'),
133:),

134: out put . Qut put (' conpl et ed’

135: type=int,

136: doc=_("' Nunber of privileges renoved'),
137:),

138:)

139:

140: api.register(role_renove_privil ege)

Extending
Freel PA

Extending existing object

As said earlier, until API instance is finalized, objects, methods, and commands can be added, removed, or
modified freely. Thisalowsto extend existing objects. Before API isfinalized, we cannot address objects through
the unified interface asapi . Obj ect . f 00, but for aimost all cases an object named f 0o isdefined in aplugin
i palib. plugins. foo.

1. Add new parameter:

fromipalib. plugins.user inport user
fromipalib inmport Str,
user.takes_parans += (
Str('foo',
cli_nanme='foo',
| abel = (' Foo'),
),

ONoTRWONE

2. Re-define User object label to use organisation-specific terminology in Web Ul:

fromipalib.plugins.user inport user
fromipalib inport text

_ = text. CGettextFactory(donmai n='extend-i pa')
user.label = ('Staff')
user .| abel _singular = _('Engineer"')

QU RN RE

Notethat were-defined locally _ method to usedifferent Get t ext Fact or y. AsGettextFactory issupporting
a single trandation domain, all new trandation terms need to be placed in a separate transation domain and
referred accordingly. Python rulesfor scoping will keep this symbol as<package>. _ and asnobody imports
it explicitly, it will not interfere with the framework's provided t ext . _.

3. Assume/ dev/ nul | asdefault shell for all new users:

1: fromipalib.plugins.user inport user_add

2

3 def override_default_shell cb(self, Idap, dn

4 entry attrs, attrs_list,

5: *keys, **options):

6: if 'loginshell' in entry_attrs:

7: default _shell = [self.api.Qbject.user.parans['|oginshell'].default]
8 if entry_attrs['loginshell'] == default_shell

9 entry attrs['loginshell'] = [u'/dev/null"]
10:

11: user_add.register _pre_call back(override_default_shell cb)

The last example exploits a powerful feature available for every method of LDAPODbject: registered callbacks.

Extending existing method

For objects stored in LDAP database instance all methods support adding callbacks. A callback is a user-provided
function that is called at certain point of execution of a method.

There are four types of callbacks:

11

Extending

Freel PA

PRE callback called before executing the method's action. Allows to
modify passed arguments, do additional validation or data
transformation and specific access control beyond what is
provided by the framework.

POST callback caled after executing the method's action. Allows to analyze
results of the action and perform additional actions or modify
output.

EXC callback called in case execution of the method's action caused an
execution error. These callbacks provide meansto recover from
an erroneous execution.

INTERACTIVE callback called at a client context to allow a command to decide if

additional parameters should be requested from an user. This
mechanism especially useful to simplify complex interaction
when there are severa levels of possible scenarios depending
on what was provided at aclient side.

All callback typesareavailableto any classderived from Cal | backl nt er f ace class. Theseincludeall LDAP-
based CRUD methods.

Callback registration methods accept areferenceto callable and optionally ordering argument f i r st (Fal se by
default) to alow the callback be executed before previously registered callbacks of thistype.

Cal | backl nt er f ace class provides following class methods:

regi ster_pre_call back registers PRE callback
regi ster_post_cal | back registers POST callback
regi ster _exc_cal | back registers EXC callback for purpose of recovering

from execution errors
regi ster_interactive _pronpt_call back registers callbacks called by the client context.

Let'slook again at the last example:

1: fromipalib.plugins.user inport user_add

2

3 def override_default_shell _cb(self, I[dap, dn

4 entry attrs, attrs_list,

5: *keys, **options):

6: if 'loginshell' in entry_attrs:

7: default _shell = [self.api.Qbject.user.parans['|oginshell'].default]
8 if entry_attrs['loginshell'] == default_shell

9 entry attrs['loginshell'] = [u'/dev/null"]

10

11 user _add.regi ster_pre_cal |l back(override_default_shell _cb)

This extension defines a pre-processing callback that accepts number of arguments:

Idap reference to the back end to store and retrieve the object's data
dn reference to the object datain LDAP
entry_attrs arguments and options of the command and their values as a dictionary. All valuesin

entry_attrs will be used for communicating with LDAP store, thus replacing values
should be done with care. For details please see Python LDAP modul e documentation

attrs list list of all attributes we intend to fetch from the back end

Extending

Freel PA
keys arguments of the command
options al other unidentified parameters passed to the method

Arguments of a post-processing callback, POST, are dlightly different. As action is already performed and the
attributes of the entry are fetched back from the back end, thereisno need to provideattrs_Il i st:

1 fromipalib.plugins.user inport user_add

2 def verify_shell _cb(self, Idap, dn. entry_attrs,

3 *keys, **options):

4. if "loginshell' in entry_attrs:

5: default _shell = [self.api.Qbject.user.paranms['|oginshell'].default]
6: if entry_attrs['loginshell'] == default_shell:

7 # report that default shell is assigned

8

9

user _add. regi ster_post _cal | back(verify_shell _cb)

Execution error callback, EXC, has following signature:

1: def user_add_error_cb(self, args, options, exc,
2: call _func, *call_args, **call_kwargs):
3: return

where arguments have following meaning:

args arguments of the original method

options options of the original method

exc exception object thrown by acall_func

call_func function that was caled by the method and caused the error of execution.

In case of LDAP-based methods this is often | dap.add _entry() or
| dap. nodi fy_entry(), orasimilar function

call_args first argument passed to the call_func
call_kwargs remaining arguments of call_func
Finally, interactive prompt callback receives kw argument which isadictionary of all arguments of the command.

All callbacks are supplied with areference to the method instance, sel f, unlessthe callback itself has an attribute
caled'i m sel f'. Ascan be seen in callback examples, self reference recursively provides access to the whole
Freel PA API structure.

This approach gives complete control of existing FreelPA methods without deep dive into details of LDAP
programming even if the framework allows such a deep dive.

Web Ul

Freel PA framework has two major client applications: Web Ul and command line-based client tool, i pa. Web
Ul communicates with a Freel PA server running WSGI application that accepts JSON-formatted requests and
translates them to calls to Freel PA plugins.

A following codeini nst al | / shar e/ ui / wsgi . py defines Freel PA web application:

1: fromipalib inport api

2: fromipalib.config inport Env

3: fromipalib.constants inmport DEFAULT_CONFI G
4:

Extending

Freel PA
5: # Determ ne what debug level is configured. W can only do this
6: # by reading in the configuration file(s). The server always reads
7: # default.conf and will also read in “context'.conf.
8: env = Env()
9: env._bootstrap(context="server', |og=None)
10: env._finalize_core(**di ct(DEFAULT_CONFI G))
11:

12: # Initialize the APl with the proper debug |evel
13: api.bootstrap(context="server', debug=env.debug, | og=None)

14: try:

15: api . finalize()

16: except StandardError, e:

17: api.log.error('Failed to start I1PA: %' %e)

18: el se:

19: api .l og.info('*** PROCESS START ***')

20:

21: # This is the WoA@ call abl e:

22: def application(environ, start_response):

23: if not environ['wsgi.nultithread']:

24 return api.Backend. session(environ, start_response)
25: el se:

26: api . log.error ("1 PA does not work with the threaded MPM use the pre-fo

At line 13 we set up Freel PA framework with server context. This means plugins are loaded and initialized from
following locations:

* ipalib/plugins/ --genera FreelPA plugins, available for al contexts
e i paserver/ pl ugi ns/ -- server-specific plugins, availablein'ser ver ' context

With api . finalize() cal a line 15 Freel PA framework is locked down and al components provided by
plugins are registered at api name spaces. api . Qbj ect , api . Met hod, api . Command, api . Backend.

At this point, api name spaces become usable and our WSGI entry point, defined on lines 22 to 26 can access
api . Backend. sessi on() to generate response for WSGI request.

Web Ul itself iswritten in JavaScript and utilizes JQuery framework. It can be split into three major parts:

communication tools defined in i pa. j s to alow talking with FreelPA server using AJAX
reguests and JSON formatting

presentation toolsinfacet.js,entity.js,search.js,wdget.js,add.js,and
det ai | s. j s togivebasic building blocks of Web Ul

objects actual implementation of Web Ul for Freel PA objects (user, group, hogt, rule, and
other available objects registered at api . Cbj ect by the server side)

The code of these JavaScript files is loaded in i ndex. ht M and kicked into work by webui . j s where
main navigation and document's onr eady event handler are defined. In addition, i ndex. ht M imports
ext ensi on. j s file where al extensions to Web Ul can be registered or referenced. As ext ensi on. j s is
loaded after all other Web Ul JavaScript files but beforewebui . j s, it can already use al tools of the Web UI.

The execution of Web Ul startswith the call of | PA. i ni t () function which does following:
1. Set up AJAX asynchronous communication via POST method using JSON format.

2. Fetches meta-dataabout Freel PA methods available on the server using JSON format and makesthem available
as| PA. net hods.

3. Fetches meta-data about Freel PA objects available on the server using JSON format and makes them available
as| PA. obj ect s.

Extending

Freﬂ PA

4. Fetches trandations of messages used in the Web Ul and makes them available as| PA. nessages.
5. Fetchesidentity of the user running the Web Ul, accessible as| PA. whoani .
6. Fetches Freel PA environment specific for Web Ul, accessibleas| PA. env.

The communication with FreelPA server is done using | PA. command() function. Commands created
with | PA. command() can later be executed with execut e() method. This separation of construction
and actual execution allows to create multiple commands and combine them together in a single request.
Batch requests are created with | PA. bat ch_comuand() function and command are added to them
with add_conmmand() method. In addition, FreelPA Web Ul alows to run commands concurrently with
| PA. concurrent _conmmand() function.

Web Ul hasfollowing DOM structure:

Container
background header navigation content
background-header header-logo
background-navigation header-network-activity-
indicator
background-left loggedinas
background-right

Cont ai ner divisatop-level one, it includes background, header, navigation, content divs. These divs and their
parts can be manipulated from the JavaScript code to represent the Ul. However, Freel PA gives an easier way
to accomplish this.

Facets

Facet is asmallest block of Freel PA Web Ul. When facet is defined, it has name, label, link to an entity it is part
of, and methods to create, show, load, and hide itself.

Entities

Entity isaddressable group of facets. Freel PA Web Ul provides a declarative way of creating entities and defining
their facets based on JavaScript's syntax. Following example is a complete definition of a netgroup facet:

1. [IPA netgroup = {};

2:

3: IPA netgroup.entity = function(spec) {
4. var that = I PA entity(spec);

5: that.init = function(parans) {

6: par ans. bui | der. search_facet ({
7: colums: |

8: ‘cn',

9: ' description'

10:]

11: }).

12: details_facet ({

13: sections: |

14: {

15: nane: 'identity',
16: fields: |

17: ‘cn',

18: {

19: factory: |PA textarea w dget,

Extending

Freel PA
20: nane: 'description'
21: },
22: ' ni sdonmai nnane'
23:]
24 }
25:]
26: }).
27: associ ati on_facet ({
28: nanme: ' nenberhost host',
29: facet _group: 'nenber’
30: }).
31: associ ation_facet ({
32: nane: ' nmenber host _host group',
33: facet _group: 'nenber’
34: }).
35: associ ation_facet ({
36: nanme: ' nenberuser_user’,
37: facet _group: 'nenber’
38: }).
39: associ ation_facet ({
40: nane: ' nenberuser_group',
41: facet _group: 'nenber’
42: }).
43: associ ation_facet ({
44 nane: ' nenberof _netgroup',
45: associ ator: |PA serial_associ ator
46: }).
47: st andar d_associ ati on_facets().
48: adder _di al og({
49: fields: [
50: ‘cn'
51: {
52: factory: |PA textarea_w dget,
53: nane: 'description'
54: }
55:]
56: 1)
57: };
58:
59: return that;
60: };
61:

62: |1PA register('netgroup', |PA netgroup.entity);

This definition of a netgroup facet describes:

details facet afacet named 'i denti t y' and three fields, cn, descri pti on,
and ni sdonmai nnane. In addition, descri ption field is a
text area widget. This facet is used to display existing netgroup
information.

association facets number of facets, linking this one with others. In case of a netgroup,
netgroups are linked to facet group nenber viadifferent attributes.
The definition aso adds standard association facets defined in
entity.js.

adder dialog adialog to create anew netgroup. The dialog hastwo fields: cn and
descri pti on wheredescri pti on isagain atext areawidget.

Extending
Freel PA

Similarly to Freel PA core framework, created entity needsto beregistered totheWeb Ul vial PA. r egi st er ()
method.

In order to add new entity to the Web UI, one can useext ensi on. j s. Thisfilein/ usr/ share/ i pa/ ht n
is empty and provided specifically for this purpose.

Asan example, let's define an entity "Tank' corresponding to our aquarium tank:

1 | PA. tank = {};

2 | PA.tank.entity = function(spec) {

3 var that = I PA entity(spec);

4 that.init = function(parans) {

5 detail s _facet ({

6 sections: |

7 {

8 nane: 'identity',
9 fields: |
10 'species', 'height', "width', 'depth’
11]
12: }

13:]

14).

15 st andard_associ ati on_facets().
16 adder _di al og({

17 fields: |

18 'species', 'height', "width', 'depth’
19]
20: 1)
21: };
22 };
23:

24: | PA register('tank', IPA tank.entity);

Command line tools

As an alternative to Web Ul, Freel PA server can be controlled via command-line interface provided by thei pa
utility. This utility is operating under ‘cl i ent ' context and looks even simpler than Web Ul'swsgi . py:

i mport sys
fromipalib inmport api, cli
'__main

if _nane_ =="'__
cli.run(api)

agRwNE

(¢]

i . run() isthecentral running point defined ini pal i b/ cli . py:

<cli.py code>
cli_plugins = (

cli,

t ext ui,

consol e,

hel p,

show_nmappi ngs,

)
def run(api):

QN RWNE

=

Extending
Freel PA

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

error = None
try:
(options, argv) = api.bootstrap_w th_gl obal option
for klass in cli_plugins:
api . regi ster (kl ass)
api . | oad_pl ugi ns()
api . finalize()
if not 'config_ | oaded" in api.env:
rai se Not Confi guredError ()
sys. exit(api.Backend.cli.run(argv))
except Keyboardlnterrupt:
print "'
api .l og.info('operation aborted')
except PublicError, e:
error = e
except StandardError, e:
api .l og. exception('%: %', e.__class__.
error = Internal Error ()
if error is not None:
assert isinstance(error, PublicError)
api . log.error(error.strerror)
sys.exit(error.rval)

__name__,

s(context="cli")

str(e))

As with WSGI, api is bootstraped, though with a client context and using global options from / et ¢/ i pa/
def aul t . conf , and command linearguments. In additionto common pluginsavailableini pal i b/ pl ugi ns,
cl i . py addsfew command-line specific classes defined in the modul e itself:

cli

t ext ui

consol e

hel p

a backend for executing from command line interface which does translation of
command line option names, basic verification of commands and fallback to show
help messages with hel p command, execution of the command, and translation
of the output to command-line friendly format if thisis defined for the command.

a backend to nicely format output to stdout which handles conversion from
binary to base64, printstext word-wrapped to theterminal width, formatsreturned
complex values so that they can be easily understood by a human being.

>>> entry = {' nange' u' Test exanple', 'age
>>> api . Backend.textui.print_entry(entry)
age: 100
nane: Test exanple

u' 100" }

starts interactive Python console with Freel PA commands

generates help for every command and method of Freel PA and structures it into
sections according to the registered Freel PA objects.

>>> api . Command. hel p(u' user-show)
Purpose: Display information about a user.
Usage: ipa [global-options] user-show LOG N [options]

Opt i ons:

-h, --help show this help nessage and exit

--rights Di splay the access rights of this entry (requires --al
i pa man page for details.

--all Retrieve and print all attributes fromthe server.
command out put .

--raw Print entries as stored on the server. Only affects ot

Extending
Freel PA

format.

show_mappi ngs displays mappings between command's parameters and LDAP attributes:

>>> api . Command. show_mappi hgs(conmand_nane=u"rol e-fi nd")
Paraneter : LDAP attribute

nane :¢n
desc . description
timelimt : timelimt?
sizelimt : sizelimt?

Extending command line utility

Sincei pa utility operates under client context, it loadsall command pluginsfromi pal i b/ pl ugi ns. A smple
way to extend command lineisto drop itspluginfileintoi pal i b/ pl ugi ns on the machine wherei pa utility
is executed. Next timei pa is started, new plugin will be loaded together with all other plugins fromi pal i b/
p! ugi ns and commands provided by it will be added to the api .

Let's add acommand line plugin that allows to ping a server and measures round trip time:

1: fromipalib inmport frontend

2: fromipalib inport output

3: fromipalib inmport _, ngettext

4: fromipalib inport ap

5: inport time

6:

7: __doc__ = _("""

8: Local extensions to Freel PA conmands

9: """)

10:

11: class tinmed_ping(frontend. Comrand):

12: _doc__ = ('Ping renote Freel PA server and neasure round-trip')
13:

14: has_out put = (

15: out put. summary,

16:)

17: def run(self):

18: tl =time.time()

19: result = self.api.Conmand. pi ng()
20: t2 = time.tinme()
21: sunmary = u"""Round-trip to the server is % ns.
22: Server response is %"""
23: return dict(summary=sumary % ((t2-t1)*1000.0, result[' sumrary']))
24

25: api.register(timed_ping)

When this plugin codeisplaced intoi pal i b/ pl ugi ns/ ext end- cl i . py (name of the plugin file can be set
arbitrarily), i pa ti med- pi ng will produce following output:

$ ipa tined-ping

Round-trip to the server is 286.306143 ns.
Server response is | PA server version 2.1.3d T8a254ca. APl version 2.13

Extending
Freel PA

In this example we have created t i ned- pi ng command and overrode its r un() method. Effectively, this
command will only work properly ontheclient. If theclient isalso Freel PA server (all Freel PA serversareenrolled
as Freel PA clients), the same code will also be loaded by the server context and will be accessible to the Web
Ul aswell, albeit its usefulness will be questionable as it will be measuring the round-trip to the server from the
server itself.

File paths

Finally, it should be noted that depending on installed Python version and operating system, paths where plugins
are loaded from may differ. Usually Python extensions are placed in si t e- packages Python sub-directory. In
Fedora and RHEL distributions, thisis/ usr/ | i b/ pyt hon<ver si on>/ si t e- packages. Thus, full path
toext end-cli. pywouldbe/ usr/1i b/ pyt hon<versi on>/ si t e- packages/i pal i b/ pl ugi ns/
extend-cli. py.

On recent Fedora distribution, following paths are used:

Plugins Python module prefix File path

common ipalib/plugins /usr/lib/python2.7/site-packages/
ipalib/plugins

server ipaserver/plugins /usr/lib/python2.7/site-packages/

ipaserver/plugins

installer, updates ipaserver/install/plugins /usr/lib/python2.7/site-packages/
ipaserver/install/plugins

Next table explains use of contexts in Freel PA applications:

Context Application Plugins Description

server wsgi.py common, server Main FreelPA server,
server context

cli ipa common Command line interface,
client context

updates ipa-ldap-updater common, server, updates |LDAP schema updater

Platform portability

Originally FreelPA was created utilizing packages available in Fedora and RHEL distributions. During
configuration stages multiple system services need to be stopped and started again, scheduled to start after
reboot and re-configured. In addition, when operating system utilizing security measures to harden the server
setup, appropriate activities need to be done as well for preserving proper security contexts. As configuration
details, service names, security features and management tools differ substantially between various GNU/Linux
distributions and other operating systems, porting Freel PA project's code to other environment has proven to be
problematic.

When Fedora project has decided to migrate to systemd for services management, Freel PA packages for Fedora
needed to be updated as well, at the same time preserving support for older SystemV initialization scheme used
in older releases. This prompted to develop a'platformization’ support allowing to abstract services management
between different platforms.

FreelPA 2.1.3 includes first cut of platformization work to support Fedora 16 distribution based on systemd. At
the same time, there is an effort to port Freel PA client side code to Ubuntu distributions.

Platform portability in Freel PA means centralization of code to manage system-provided services, authentication
setup, and means to manage security context and host names. It is going to be extended in future to cover other
areas as well, both client- and server-side.

20

Extending
Freel PA

The code that implements platform-specific adaptation is placed under i papyt hon/ pl at f or m Asof Freel PA
2.1.3, there are two magjor "platforms" supported:

redhat Red Hat-based distributions utilizing SystemV init scripts such as Fedora 15 and RHEL 6

fedoral6 as hame suggests, Fedora 16 and above, are supported by this platform module. It is based on
syst end system management tool and utilizescommon codeini papyt hon/ pl at f or ml
systend. py. fedoral6. py contains only differentiation required to cover Fedora 16-
specific implementation of systemd use, depending on changesto Dogtag, Tomcat6, and 389-
ds packages.

Each platform-specific adaptation should provide few basic building blocks:

AuthConfig class

Aut hConf i g class implements system-independent interface to configure system authentication resources. In
Red Hat systems this is done with authconfig(8) utility.

Aut hConf i g classisnothing morethan atool to gather configuration optionsand executetheir processing. These
options then converted by an actual implementation to series of a system calls to appropriate utilities performing
real configuration.

FreelPA expects names of AuthConfig's options to follow authconfig(8) naming scheme.
From FreelPA code perspective, the authentication configuration should be done with use of
i papyt hon. servi ces. aut hconfi g:

fromipapython inport services as ipaservices

auth_config = ipaservices. aut hconfig()
aut h_confi g. di sabl e("I dap").\
di sabl e("krb5") .\
di sabl e("sssd") .\
di sabl e("sssdaut h") .\
di sabl e(" nkhonedir") .\
add_option("update").\
10: enabl e("nis").\
11: add_par anet er ("ni sdonai n", "f oobar")
12: auth_config. execute()

NI RWNE

The actual implementation can differ. r edhat platform module builds up arguments to authconfig(8) tool and on
execut e() method runsit with those arguments. Other systems will need to have processing of the arguments
done as defined by authconfig(8) manua page. Thisis, perhaps, biggest obstacle on porting Freel PA client side
to the new platform.

PlatformService class

Pl at f or nSer vi ce class abstracts out an external process running on the system which is possible to
administer: start, stop, check its status, schedule for automatic startup, etc.

Services are used thoroughly through FreelPA server and client install tools. There are severa services
that are used especially often and they are selected to be accessible via Python properties of
i papyt hon. servi ces. knownser vi ces instance.

To facilitate more expressive way of working with often used services, ipapython.services module provides a
shortcut to access them by name via ipapython.services.knownservices.<service>. A typical code change looks
likethis:

fromipapython inport services as ipaservices

21

Extending
Freel PA

- service.restart("dirsrv")

- service.restart ("krb5kdc")
service.restart("httpd")

i paservi ces. knownservices.dirsrv.restart ()
i paservi ces. knownser vi ces. kr b5kdc. restart ()
i paservi ces. knownservi ces. httpd.restart()

+ + +

Besides expression change this also makes more explicit to platform providers access to what services they have
to implement. Service names are defined in ipapython.platform.base.wellknownservices and represent definitive
names to access these services from Freel PA code. Of course, platform provider should remap those names to
platform-specific ones -- for ipapython.platform.redhat provider mapping isidentity.

Porting to a new platform may be hard as can be witnessed by this example: https://www.redhat.com/archives/
freeipa-devel /2011-September/msg00408.html

If there is doubt, always consult existing providers. r edhat . py iscanonical -- it represents the code which was
used throughout Freel PA v2 devel opment.

Enabling new platform provider

When support for new platform isimplemented and appropriate provider isplacedtoi papyt hon/ pl at f or m,
it is time to enable its use by the FreelPA. Since Freel PA is supposed to be rolled out uniformly on multiple
clients and servers, best approach is to build and distribute software packages using platform-provided package
management tools.

Withthisin mind, platform code selection in Freel PA is static and run at package production time. In order to select
proper platform provider, one needs to pass SUPPORTED PLATFORMargument to Freel PA's make process:

export SUPPORTED PLATFORM=f edor al6

Force re-generate of platform support
rm-f ipapython/services. py

make version-update

make | PA VERSION |'S G T_SNAPSHOT=no al |

ver si on- updat e target in Freel PA top-level Makefile will re-create ipapython/services.py file based on the
value of SUPPORTED_PLATFORMvariable. By default thisvariableissettor edhat .

i papyt hon/ servi ces. py isgenerated usingi papyt hon/ servi ce. py. i n.Infact, thereisonly single
line gets replaced in the latter file at the last line:

authconfig is an entry point to platformprovided AuthConfig inplenentation
(instance of ipapython. platform base. Aut hConfi g)
aut hconfig = None

knownservices is an entry point to known platform services
(instance of ipapython. platform base. KnownServi ces)
knownservi ces = None

service is a class to instantiate ipapython. platform base. Pl atfornService
servi ce = None

restore context default inplenentation that does nothing
def restore_context _default(filepath):
return

Restore security context for a path

22

https://www.redhat.com/archives/freeipa-devel/2011-September/msg00408.html
https://www.redhat.com/archives/freeipa-devel/2011-September/msg00408.html

Extending
Freel PA

If the platformhas security features where context is inportant, inplenent your own
version in platformservices
restore_context = restore_context_default

Default inplenmentation of backup and replace hostnane that does nothing
def backup_and_repl ace_host nane_defaul t (fstore, statestore, hostnane):
return

Backup and replace systenis hostnane

Since many platfornms have their own way how to store systenis hostnane, this nmethod m
inplemented in platformservices

backup_and_r epl ace_host name = backup_and_r epl ace_host nanme_def aul t

from i papyt hon. pl at f or m SUPPORTED PLATFORM i mport *
As last statement imports everything from the supported platform provider, all exposed methods and variables
above will be re-defined to platform-specific implementations. This allows to have Freel PA framework use of

these services separated from the implementation of the platform.

The code in ipapython/services.py is going to grow over time when more parts of FreelPA framework become
platform-independent.

