
1

Extending FreeIPA
Alexander Bokovoy <abokovoy@redhat.com>

Table of Contents
Introduction ... 1
High level design .. 1
Core plug-in framework ... 2

Name space ... 3
Parameters ... 3
Objects .. 5

Extending existing object .. 11
Extending existing method .. 11
Web UI ... 13

Facets .. 15
Entities .. 15

Command line tools ... 17
Extending command line utility ... 19

File paths ... 20
Platform portability .. 20

AuthConfig class ... 21
PlatformService class ... 21
Enabling new platform provider ... 22

Introduction
FreeIPA is an integrated security information management solution. There is a common framework written in
Python to command LDAP server provided by a 389-ds project, certificate services of a Dogtag project, and a MIT
Kerberos server, as well as configuring various other services typically used to maintain integrity of an enterprise
environment, like DNS and time management (NTP). The framework is written in Python, runs at a server side,
and provides access via command line tools or web-based user interface.

As core parts of the framework are implemented as pluggable modules, it is possible to extend FreeIPA on multiple
levels. This document attempts to present general ideas and ways to make use of most of extensibility points in
FreeIPA.

For information management solutions extensibility could mean multiple things. Information objects that are
managed could be extended themselves or new objects could be added. New operations on existing objects might
become needed or certain aspects of an object should be hidden in a specific environment. All these tasks may
require quite different approaches to implement.

Following chapters will cover high-level design of FreeIPA and dive into details of its core framework. Knowledge
of Python programming language basics is required. Understanding LDAP concepts is desirable, though it is not
required for simple extensions as FreeIPA attempts to provide sufficient mapping of LDAP concepts onto less
complex structures and Python objects, lowering a barrier to fine tune FreeIPA for the specific use cases.

High level design
FreeIPA core is written in Python programming language. The data is stored in LDAP database, and client-server
paradigm is used for managing it. A FreeIPA server instance runs its own LDAP database, provided by 389-ds
project (formerly Fedora Directory Server). A single instance of LDAP database corresponds to the single FreeIPA
domain. Access to all information stored in the database is provided via FreeIPA server core which is run as a
simple WSGI application which uses XML-RPC and JSON to exchange requests with its own clients.

Extending
FreeIPA

2

Multiple replicas of the FreeIPA instance can be created on different servers, they are managed with the help of
replication mechanisms of 389-ds directory server.

As LDAP database is used for data storage, LDAP's Access Control Model is used to provide privilege separation
and Kerberos tickets are used to pass-through assertion of authenticity. As Kerberos server is using the same LDAP
database instance, use of Kerberos tickets allows to perform operations against the database on the server if a client
is capable to forward such tickets via communication channels selected for the operation.

When FreeIPA client connects to FreeIPA server, a Kerberos ticket is forwarded to the server and operations
against LDAP database are performed under identity authenticated when the ticket was issued. As LDAP database
also uses Kerberos to establish identity of a client, Access Control Information attributes can be used to limit what
entries could be accessed and what operations could be performed.

The approach allows to delegate operations from a FreeIPA client to the FreeIPA server and in general gives
FreeIPA server ability to interact with any Kerberos-aware service on behalf of the client. It also allows to keep
FreeIPA client side implementation relatively light-weight: all it needs to do is to be able to forward Kerberos
ticket, process XML-RPC or JSON, and present resulting responses to the user.

Besides run-time core, FreeIPA includes few configuration tools. These tools are split between server and client.
Server-side tools are used when an instance of FreeIPA server is set up and configured, while client-side tools
are used to configure client systems. While the server tools are used to configure LDAP database, put proper
schema definitions in use, create Kerberos domain, Certificate Authority and configure all corresponding services,
client side is more limited to configure PAM/NSS modules to work against FreeIPA server, and make sure that
appropriate information about the client host is recorded in FreeIPA databases.

Core plug-in framework
FreeIPA core defines few fundamentals. These are managed objects, their properties, and methods to apply actions
to the objects. Methods, in turn, are commands that are associated with a specific object. Additionally, there are
commands that do not have directly associated objects and may perform actions over few of those. Objects are
stored using data store represented by a back end, and one of most useful back ends is LDAP store back end.

Altogether, set of Object, Property, Method, Command, and Backend instances represent application
programming interface, API, of FreeIPA core framework.

In Python programming language object oriented support is implemented using a fairly simple concept that allows
to modify instances in place, extending or removing their properties and methods. While this concept is highly
useful, in security-oriented frameworks ability to lock down and trace origins of changes is also important. FreeIPA
core attempts to implement locking down feature by artificially making instances of foundation classes read-
only after their initialization has happened. If an attempt to modify object happens after it was locked down, an
exception is thrown. There are many classes following this pattern.

For example, ipalib.frontend.Command class is derived from ipalib.frontend.HasParam
class that derives from ipalib.plugable.Plugin class which, in turn, is derived from
ipalib.base.ReadOnly class.

As result, every command has typed parameters and can dynamically be added to the framework. At the same
time, one cannot modify the properties of the command accidentally once it is instantiated. This protects from
modifications and enforces true nature of the commands: they cannot have state that is carried over across multiple
calls to the same command unless the state is changing globally the whole environment around.

Environment also holds information about the context of execution. The context is important part of the FreeIPA
framework as it also defines which methods of the command instance are called in order to perform action. Context
in itself is defined by the environment which gives means to catch and store certain information about execution.
As with commands themselves, once instantiated, environment cannot be changed.

By default, for primary FreeIPA use, there are three major contexts defined: server, client, and installer/updates.

server context plugins are registered and communicate with clients
via XML-RPC and JSON listeners. They validate

Extending
FreeIPA

3

any arguments and options defined and then execute
whatever action they supposed to perform

client context plugins are used to validate any arguments and
options they take and then forward the request to the
FreeIPA server.

installer context, updates context plugins specific to installation and update are loaded
and registered. This context can be used to extend
possible operations during set up of FreeIPA server.

A user may define any context they want. FreeIPA names server context as 'server'. When using the ipa
command line tool the context is 'cli'. Server installation tools, in particular, 'ipa-ldap-updater', use special
'updates' context to load specialized plugins useful during update of the installed FreeIPA server.

Because these utilities use the same framework they will do the same validation, set default values, and perform
other basic actions in all contexts. This can help to save a round-trip when testing for invalid data. However, for
client-server communication, the server is always authoritative and can re-define what the client has sent.

Name space
FreeIPA has one special type of read-only objects: NameSpace. NameSpace class gives an ordered, immutable
mapping object whose values can also be accessed as attributes. A NameSpace instance is constructed from
iterable providing its members, which are simply arbitrary objects with name attribute. This attribute must conform
to two following rules:

• Its value must be unique among the members of the name space

• Its value must pass the check_name() function ipalib.base module.

check_name() function encodes a simple rule of a lower-case Python identifier that neither starts nor ends with
an underscore. Actual regular expression that codifies this rule is NAME_REGEX within ipalib.constants
module.

Once name space is created, it locks itself down and becomes read-only. It means that while original objects
accessed through the name space might change, the references to them via name space will stay intact. They cannot
be removed or changed to point to other objects.

The name spaces are used widely in FreeIPA core framework. As mentioned earlier, API includes set of objects,
commands, and methods. Objects include properties that are defined before lock-down. At object's lock-down
parameters are placed into a name space and that locks them down so that no parameter specification can change.
Command's parameters and options also locked down and cannot change once command instance is instantiated.

Parameters
Param class is used to define attributes, arguments, or options throughout FreeIPA core framework. The Param
base class is not used directly but rather sub-classed to define properties like passwords or specific data types
like Str or Int.

Instances of classes inherited from Param base class give uniform access to the properties required to command
line interface, Web UI, and internally to FreeIPA code. Following properties are most important:

name name of the parameter used internally to address the parameter in Python code. The name
could include special characters to designate a Param spec.

cli_name optional name of the parameter to use in command line interface. FreeIPA's CLI sets a
mechanism to automatically translate from a command line option name to a parameter's
name if cli_name is specified.

label A short phrase describing the parameter. It is used on the CLI when interactively
prompting for the values, and as a label for the form inputs in the Web UI. The label
should start with an initial capital letter.

Extending
FreeIPA

4

doc A long description of the parameter. It is used by the CLI when displaying the help
information for a command, and as an extra instruction for the form input on the Web UI.
By default the doc is the same as the label but can be overridden when a Param instance
is created. As with label, doc should start with an initial capital letter and additionally
should not end with any punctuation.

required If set to True, means this parameter is required to supply. All parameters are required by
default and that means that required property should only be specified when parameter
is not required.

multivalue if set to True, means this parameter can accept a Python's tuple of values. By default
all parameters are single-valued.

When parameter name has any of ?, *, or + characters, it is treated as parameter spec and is used to specify whether
parameter is required, and should it be multivalued. Following syntax is used:

Spec Name Required Multivalue

'var' 'var' True False

'var?' 'var' False False

'var*' 'var' False True

'var+' 'var' True True

Access to the value stored by the Param class is given through a callable interface:

age = Int('age', label='Age', default=100)
print age(10)

Following parameter classes are defined and used throughout FreeIPA framework:

Bool boolean parameters that are stored in Python's bool type, therefore, they return either True or False
value. However, they accept 1, True (Python boolean), or Unicode strings '1', 'true' and 'TRUE' as
truth value, and 0, False (Python boolean), or Unicode strings '0', 'false', and 'FALSE' as false.

Flag boolean parameters which always have default value. Property default can be used to set the value.
Defaults to False:

verbose = Flag('verbose', default=True)

Int integer parameters that are stored in Python's int type. Two additional properties can be
specified when constructing Int parameter:

minvalue minimal value that this parameter accepts, defaults to MININT

maxvalue maximum value this parameter can accept, defaults to MAXINT

Float floating point parameters that are stored in Python's float type. Float has the same two
additional properties as Int. Unlike Int, there are no default values for the minimal and
maximum boundaries.

Bytes a parameter to represent binary data.

Str parameter representing a Unicode text. Both Bytes and Str parameters accept following
additional properties:

minlength minimal length of the parameter

maxlength maximum length of the parameter

length length of the parameters

Extending
FreeIPA

5

pattern regular expression applied to the parameter's value to
check its validness

pattern_errmsg an error message to show when regular expression check
fails

IA5Str string parameter as defined by RFC 4517. It means all characters of the string must be ASCII
characters (7-bit).

Password parameter to store passwords in Python unicode type. Password has one additional property:

confirm boolean specifying whether password should be confirmed when entered.
The confirmation is enabled by default.

Enum parameter can have one of predefined values that are specified with values property which is
a Python's tuple.

For most common case of enumerable strings there are two parameters:

BytesEnum parameter value should be one of predefined unicode strings

StrEnum equivalent to BytesEnum. Originally BytesEnum was stored in Python's str class instances
but to be aligned with Python 3.0 changes both classes moved to store as unicode.

When more than one value should be accepted, there is List parameter that allows to provide list of strings separated
by a separator, default to ','. Also, the List parameter skips spaces before the next item in the list unless property
skipspace is set to False:

names = List('names', separator=',', skipspace=True)
names_list = names(u'John Doe, John Lee, Brad Moe')
names_list is (u'John Doe', u'John Lee', u'Brad Moe')
names = List('names', separator=',', skipspace=False)
names_list = names(u'John Doe, John Lee, Brad Moe')
names_list is (u'John Doe', u' John Lee', u' Brad Moe')

Objects
The data manipulated by FreeIPA is represented by an Object class instances. Instance of an Object class is
a collection of properties, accepted parameters, action methods, and a reference to where this object's data is
preserved. Each object also has a reference to a property that represents a primary key for retrieving the object.

In addition to properties and parameters, Object class instances hold their labels to use in user interfaces. In
practice, there are few differences in how labels are presented depending on whether it is command line interface
or a Web UI, but they can be ignored at this point.

To be useful, all Object sub-classes need to override takes_param property. This is where most of flexibility
of FreeIPA comes from.

takes_param attribute

Properties of every object derived from Object class can be specified manually but FreeIPA gives a handy
mechanism to perform descriptive specification. Each Object class has Object.takes_param attribute
which defines a specification of all parameters this object type is accepting.

Next example shows how to create new object type. We create an aquarium tank by defining its dimensions and
specifying which fish is living there.

 1: from ipalib import api, Object
 2: class tank(Object):
 3: takes_params = (

Extending
FreeIPA

6

 4: StrEnum('species*', label=u'Species', doc=u'Fish species',
 5: values=(u'Angelfish', u'Betta', u'Cichlid', u'Firemouth')),
 6: Float('height', label=u'Height', doc=u'height in mm', default=400.0),
 7: Float('width', label=u'Width', doc=u'width in mm', default=400.0),
 8: Float('depth', label=u'Depth', doc=u'Depth in mm', default=300.0)
 9:)
10:
11: api.register(tank)
12: api.finalize()
13: print list(api.Object.tank.params)
14: # ['species', 'height', 'width', 'depth']

First we define new class, tank, that takes four parameters. On line 11 we register the class in FreeIPA's API
instance, api. This creates tank object in api.Object name space. Many objects can be added into the API
up until api.finalize() is called as we do on line 12.

When api.finalize() is called, all name spaces are locked down and all registered Python objects in those
name spaces are also finalized which in turn locks their structure down as well.

As result, once we have finalized our API instance, every registered Object can be accessed through
api.Object.<name>. Our aquarium tank object now has defined params attribute which is a name space
holding all Param instances. Thus we can introspect and see which parameters this object has.

At this point we can't do anything reasonable with our aquarium tank yet because we haven't defined methods to
handle it. In addition, our object isn't very useful as it does not know how to store the information about aquarium's
dimensions and species living in it.

Object methods

Methods perform actions on the associated objects. The association of methods and objects is done through naming
convention rather than using programming language features. FreeIPA expects methods operating on an object
<name> to be named <name>_<action>:

class tank_create(Method):
 def execute(self, **options):
 # create new aquarium tank

api.register(tank_create)

class tank_populate(Method):
 def execute(self, **options):
 # populate the aquarium tank with fish

api.register(tank_populate)

As can be seen, each method is a separate Python class. This approach allows to maintain complexity of methods
isolated from each other and from the complexity of the objects and their storage which is probably most important
aspect due to LDAP complexity overall.

The linking between objects and their methods goes further. All parameters defined for an object, may be used
as arguments of the methods without explicit declaration. This means api.Method.tank_populate will
accept species argument.

Methods with storage back ends

In order to store the information, Object class instances require a back end. FreeIPA defines several
back ends but the ones that could store data are derived of ipalib.CrudBackend. CRUD, or Create,
Retrieve, Update, and Delete, are basic operations that could be performed with corresponding objects.

Extending
FreeIPA

7

ipalib.crud.CrudBackend is an abstract class, it only defines functions that should be overridden in classes
that actually implement the back end operations.

As back end is not used directly, FreeIPA defines methods that could use back end and operate on object's
defined by certain criteria. Each method is defined as a separate Python class. As CRUD acronym suggests, there
are four base operations: ipalib.crud.Create, ipalib.crud.Retrieve, ipalib.crud.Update,
ipalib.crud.Delete. In addition, method ipalib.crud.Search allows to retrieve all entries that match
a given search criteria.

When objects are defined and the back end is known, methods can be used to manipulate information stored by
the back end. Most of useful operations combine some of CRUD base operations to perform their tasks.

In order to support flexible way to extend methods, FreeIPA gives special treatment for the LDAP
back end. Methods using LDAP back end hide complexity of handling LDAP queries and allow to
register user-provided functions that are called before or after method. This mechanism is defined
by ipalib.plugins.baseldap.CallbackInterface and used by LDAP-aware CRUD classes, LDAPCreate,
LDAPRetrieve, LDAPUpdate, LDAPDelete, and an analogue to ipalib.crud.Search,
LDAPSearch. There are also classes that define methods to operate on reverse relationships between
objects in LDAP to allow addition or removal of membership information both in forward and reverse
directions: LDAPAddMember, LDAPModMember, LDAPRemoveMember, LDAPAddReverseMember,
LDAPModReverseMember, LDAPRemoveReverseMember.

Most of CRUD classes are based on a LDAPQuery class which generalizes concept of querying a record addressed
with a primary key and supports JSON marshalling of the queried attributes and their values.

Base LDAP operation classes implement everything needed to create typical methods to work with self-contained
objects stored in LDAP.

LDAPObject class

A large class of objects is LDAPObject. LDAPObject instances represent entries stored in FreeIPA LDAP database
instance. They are referenced by their distinguished name, DN, and able to represent complex relationships
between entries in LDAP like direct and indirect membership.

Any class derived from LDAPObject needs to re-define few properties so that base class can properly function for
the specific object that is defined by the class. Below are commonly redefined properties:

container_dn DN of the container for this object entries in LDAP.
This one usually comes from the environment associated
with the API and by default is populated from the
DEFAULT_CONFIG of ipalibs.constants. For example,
all accounts are stored under cn=accounts, with users
are under cn=users,cn=accounts and groups are under
cn=groups,cn=accounts. In case of a new object added,
it is reasonable to select its container coordinated to default
configuration.

object_class list of LDAP object classes associated with the object

search_attributes list of attributes that will be used for search

default_attributes list of attributes that are always returned by searches

uuid_attribute an attribute that defines uniqueness of the entry

attribute_members a dict defining relations between other objects and this one. Key
is the name of attribute and value is a list of objects this attribute
may refer to. For example, host object defines that memberof
attribute of a host may refer to a hostgroup, netgroup, role,
hbacrule, or sudorule object. In other words, it means that
host could be a member of any of those objects.

Extending
FreeIPA

8

reverse_members a dict defining reverse relations between this object and other
objects. Key is the name of attribute and value is the name of an
object that refers to this object with the attribute. For example,
role object defines that member attribute of a privilege
refers to a role object.

password_attributes list of pairs defining an attribute in LDAP and a property of a
Python dictionary representing the LDAP object attributes that
will be set accordingly if such attribute exists in the LDAP entry.
As passwords have restricted access, often one needs only to know
that there is a password set on the entry to perform additional
processing.

relationships a dict defining existing relationship criteria associated with the
object. These are used in Web UI to allow filtering of objects by
the criteria. The value is defined as a tuple of an UI label and
two prefixes: inclusive and exclusive that are prepended to the
attribute parameter when options are generated by the framework.
LDAPObject defines few default criteria: member, memberof,
memberindirect, memberofindirect, and objects can redefine or
append more. Due to regularity of the design of LDAP objects,
default criteria already makes it possible to apply searches almost
uniformly: one can ask for membership of a user in a group, as
well as for a membership of a role in a privilege without explicitly
defining those relationships.

These properties define how translation would go from Python side to and from an LDAP backend.

As an example, let's see how role is defined. This is fully functioning plugin that provides operations on roles:

 1: from ipalib.plugins.baseldap import *
 2: from ipalib import api, Str, _, ngettext
 3: from ipalib import Command
 4: from ipalib.plugins import privilege
 5:
 6: class role(LDAPObject):
 7: """
 8: Role object.
 9: """
 10: container_dn = api.env.container_rolegroup
 11: object_name = _('role')
 12: object_name_plural = _('roles')
 13: object_class = ['groupofnames', 'nestedgroup']
 14: default_attributes = ['cn', 'description', 'member', 'memberof',
 15: 'memberindirect', 'memberofindirect',
 16:]
 17: attribute_members = {
 18: 'member': ['user', 'group', 'host', 'hostgroup'],
 19: 'memberof': ['privilege'],
 20: }
 21: reverse_members = {
 22: 'member': ['privilege'],
 23: }
 24: rdnattr='cn'
 25:
 26: label = _('Roles')
 27: label_singular = _('Role')
 28:
 29: takes_params = (

Extending
FreeIPA

9

 30: Str('cn',
 31: cli_name='name',
 32: label=_('Role name'),
 33: primary_key=True,
 34:),
 35: Str('description',
 36: cli_name='desc',
 37: label=_('Description'),
 38: doc=_('A description of this role-group'),
 39:),
 40:)
 41:
 42: api.register(role)
 43:
 44:
 45: class role_add(LDAPCreate):
 46: __doc__ = _('Add a new role.')
 47:
 48: msg_summary = _('Added role "%(value)s"')
 49:
 50: api.register(role_add)
 51:
 52:
 53: class role_del(LDAPDelete):
 54: __doc__ = _('Delete a role.')
 55:
 56: msg_summary = _('Deleted role "%(value)s"')
 57:
 58: api.register(role_del)
 59:
 60:
 61: class role_mod(LDAPUpdate):
 62: __doc__ = _('Modify a role.')
 63:
 64: msg_summary = _('Modified role "%(value)s"')
 65:
 66: api.register(role_mod)
 67:
 68:
 69: class role_find(LDAPSearch):
 70: __doc__ = _('Search for roles.')
 71:
 72: msg_summary = ngettext(
 73: '%(count)d role matched', '%(count)d roles matched', 0
 74:)
 75:
 76: api.register(role_find)
 77:
 78:
 79: class role_show(LDAPRetrieve):
 80: __doc__ = _('Display information about a role.')
 81:
 82: api.register(role_show)
 83:
 84:
 85: class role_add_member(LDAPAddMember):
 86: __doc__ = _('Add members to a role.')
 87:

Extending
FreeIPA

10

 88: api.register(role_add_member)
 89:
 90:
 91: class role_remove_member(LDAPRemoveMember):
 92: __doc__ = _('Remove members from a role.')
 93:
 94: api.register(role_remove_member)
 95:
 96:
 97: class role_add_privilege(LDAPAddReverseMember):
 98: __doc__ = _('Add privileges to a role.')
 99:
100: show_command = 'role_show'
101: member_command = 'privilege_add_member'
102: reverse_attr = 'privilege'
103: member_attr = 'role'
104:
105: has_output = (
106: output.Entry('result'),
107: output.Output('failed',
108: type=dict,
109: doc=_('Members that could not be added'),
110:),
111: output.Output('completed',
112: type=int,
113: doc=_('Number of privileges added'),
114:),
115:)
116:
117: api.register(role_add_privilege)
118:
119:
120: class role_remove_privilege(LDAPRemoveReverseMember):
121: __doc__ = _('Remove privileges from a role.')
122:
123: show_command = 'role_show'
124: member_command = 'privilege_remove_member'
125: reverse_attr = 'privilege'
126: member_attr = 'role'
127:
128: has_output = (
129: output.Entry('result'),
130: output.Output('failed',
131: type=dict,
132: doc=_('Members that could not be added'),
133:),
134: output.Output('completed',
135: type=int,
136: doc=_('Number of privileges removed'),
137:),
138:)
139:
140: api.register(role_remove_privilege)

Extending
FreeIPA

11

Extending existing object
As said earlier, until API instance is finalized, objects, methods, and commands can be added, removed, or
modified freely. This allows to extend existing objects. Before API is finalized, we cannot address objects through
the unified interface as api.Object.foo, but for almost all cases an object named foo is defined in a plugin
ipalib.plugins.foo.

1. Add new parameter:

1: from ipalib.plugins.user import user
2: from ipalib import Str, _
3: user.takes_params += (
4: Str('foo',
5: cli_name='foo',
6: label=_('Foo'),
7:),
8:)

2. Re-define User object label to use organisation-specific terminology in Web UI:

1: from ipalib.plugins.user import user
2: from ipalib import text
3:
4: _ = text.GettextFactory(domain='extend-ipa')
5: user.label = _('Staff')
6: user.label_singular = _('Engineer')

Note that we re-defined locally _ method to use different GettextFactory. As GettextFactory is supporting
a single translation domain, all new translation terms need to be placed in a separate translation domain and
referred accordingly. Python rules for scoping will keep this symbol as <package>._ and as nobody imports
it explicitly, it will not interfere with the framework's provided text._.

3. Assume /dev/null as default shell for all new users:

 1: from ipalib.plugins.user import user_add
 2:
 3: def override_default_shell_cb(self, ldap, dn.
 4: entry_attrs, attrs_list,
 5: *keys, **options):
 6: if 'loginshell' in entry_attrs:
 7: default_shell = [self.api.Object.user.params['loginshell'].default]
 8: if entry_attrs['loginshell'] == default_shell:
 9: entry_attrs['loginshell'] = [u'/dev/null']
10:
11: user_add.register_pre_callback(override_default_shell_cb)

The last example exploits a powerful feature available for every method of LDAPObject: registered callbacks.

Extending existing method
For objects stored in LDAP database instance all methods support adding callbacks. A callback is a user-provided
function that is called at certain point of execution of a method.

There are four types of callbacks:

Extending
FreeIPA

12

PRE callback called before executing the method's action. Allows to
modify passed arguments, do additional validation or data
transformation and specific access control beyond what is
provided by the framework.

POST callback called after executing the method's action. Allows to analyze
results of the action and perform additional actions or modify
output.

EXC callback called in case execution of the method's action caused an
execution error. These callbacks provide means to recover from
an erroneous execution.

INTERACTIVE callback called at a client context to allow a command to decide if
additional parameters should be requested from an user. This
mechanism especially useful to simplify complex interaction
when there are several levels of possible scenarios depending
on what was provided at a client side.

All callback types are available to any class derived from CallbackInterface class. These include all LDAP-
based CRUD methods.

Callback registration methods accept a reference to callable and optionally ordering argument first (False by
default) to allow the callback be executed before previously registered callbacks of this type.

CallbackInterface class provides following class methods:

register_pre_callback registers PRE callback

register_post_callback registers POST callback

register_exc_callback registers EXC callback for purpose of recovering
from execution errors

register_interactive_prompt_callback registers callbacks called by the client context.

Let's look again at the last example:

 1: from ipalib.plugins.user import user_add
 2:
 3: def override_default_shell_cb(self, ldap, dn.
 4: entry_attrs, attrs_list,
 5: *keys, **options):
 6: if 'loginshell' in entry_attrs:
 7: default_shell = [self.api.Object.user.params['loginshell'].default]
 8: if entry_attrs['loginshell'] == default_shell:
 9: entry_attrs['loginshell'] = [u'/dev/null']
10:
11: user_add.register_pre_callback(override_default_shell_cb)

This extension defines a pre-processing callback that accepts number of arguments:

ldap reference to the back end to store and retrieve the object's data

dn reference to the object data in LDAP

entry_attrs arguments and options of the command and their values as a dictionary. All values in
entry_attrs will be used for communicating with LDAP store, thus replacing values
should be done with care. For details please see Python LDAP module documentation

attrs_list list of all attributes we intend to fetch from the back end

Extending
FreeIPA

13

keys arguments of the command

options all other unidentified parameters passed to the method

Arguments of a post-processing callback, POST, are slightly different. As action is already performed and the
attributes of the entry are fetched back from the back end, there is no need to provide attrs_list:

1: from ipalib.plugins.user import user_add
2: def verify_shell_cb(self, ldap, dn. entry_attrs,
3: *keys, **options):
4: if 'loginshell' in entry_attrs:
5: default_shell = [self.api.Object.user.params['loginshell'].default]
6: if entry_attrs['loginshell'] == default_shell:
7: # report that default shell is assigned
8:
9: user_add.register_post_callback(verify_shell_cb)

Execution error callback, EXC, has following signature:

1: def user_add_error_cb(self, args, options, exc,
2: call_func, *call_args, **call_kwargs):
3: return

where arguments have following meaning:

args arguments of the original method

options options of the original method

exc exception object thrown by a call_func

call_func function that was called by the method and caused the error of execution.
In case of LDAP-based methods this is often ldap.add_entry() or
ldap.modify_entry(), or a similar function

call_args first argument passed to the call_func

call_kwargs remaining arguments of call_func

Finally, interactive prompt callback receives kw argument which is a dictionary of all arguments of the command.

All callbacks are supplied with a reference to the method instance, self, unless the callback itself has an attribute
called 'im_self'. As can be seen in callback examples, self reference recursively provides access to the whole
FreeIPA API structure.

This approach gives complete control of existing FreeIPA methods without deep dive into details of LDAP
programming even if the framework allows such a deep dive.

Web UI
FreeIPA framework has two major client applications: Web UI and command line-based client tool, ipa. Web
UI communicates with a FreeIPA server running WSGI application that accepts JSON-formatted requests and
translates them to calls to FreeIPA plugins.

A following code in install/share/ui/wsgi.py defines FreeIPA web application:

 1: from ipalib import api
 2: from ipalib.config import Env
 3: from ipalib.constants import DEFAULT_CONFIG
 4:

Extending
FreeIPA

14

 5: # Determine what debug level is configured. We can only do this
 6: # by reading in the configuration file(s). The server always reads
 7: # default.conf and will also read in `context'.conf.
 8: env = Env()
 9: env._bootstrap(context='server', log=None)
10: env._finalize_core(**dict(DEFAULT_CONFIG))
11:
12: # Initialize the API with the proper debug level
13: api.bootstrap(context='server', debug=env.debug, log=None)
14: try:
15: api.finalize()
16: except StandardError, e:
17: api.log.error('Failed to start IPA: %s' % e)
18: else:
19: api.log.info('*** PROCESS START ***')
20:
21: # This is the WSGI callable:
22: def application(environ, start_response):
23: if not environ['wsgi.multithread']:
24: return api.Backend.session(environ, start_response)
25: else:
26: api.log.error("IPA does not work with the threaded MPM, use the pre-fork MPM")

At line 13 we set up FreeIPA framework with server context. This means plugins are loaded and initialized from
following locations:

• ipalib/plugins/ -- general FreeIPA plugins, available for all contexts

• ipaserver/plugins/ -- server-specific plugins, available in 'server' context

With api.finalize() call at line 15 FreeIPA framework is locked down and all components provided by
plugins are registered at api name spaces: api.Object, api.Method, api.Command, api.Backend.

At this point, api name spaces become usable and our WSGI entry point, defined on lines 22 to 26 can access
api.Backend.session() to generate response for WSGI request.

Web UI itself is written in JavaScript and utilizes JQuery framework. It can be split into three major parts:

communication tools defined in ipa.js to allow talking with FreeIPA server using AJAX
requests and JSON formatting

presentation tools in facet.js, entity.js, search.js, widget.js, add.js, and
details.js to give basic building blocks of Web UI

objects actual implementation of Web UI for FreeIPA objects (user, group, host, rule, and
other available objects registered at api.Object by the server side)

The code of these JavaScript files is loaded in index.html and kicked into work by webui.js where
main navigation and document's onready event handler are defined. In addition, index.html imports
extension.js file where all extensions to Web UI can be registered or referenced. As extension.js is
loaded after all other Web UI JavaScript files but before webui.js, it can already use all tools of the Web UI.

The execution of Web UI starts with the call of IPA.init() function which does following:

1. Set up AJAX asynchronous communication via POST method using JSON format.

2. Fetches meta-data about FreeIPA methods available on the server using JSON format and makes them available
as IPA.methods.

3. Fetches meta-data about FreeIPA objects available on the server using JSON format and makes them available
as IPA.objects.

Extending
FreeIPA

15

4. Fetches translations of messages used in the Web UI and makes them available as IPA.messages.

5. Fetches identity of the user running the Web UI, accessible as IPA.whoami.

6. Fetches FreeIPA environment specific for Web UI, accessible as IPA.env.

The communication with FreeIPA server is done using IPA.command() function. Commands created
with IPA.command() can later be executed with execute() method. This separation of construction
and actual execution allows to create multiple commands and combine them together in a single request.
Batch requests are created with IPA.batch_command() function and command are added to them
with add_command() method. In addition, FreeIPA Web UI allows to run commands concurrently with
IPA.concurrent_command() function.

Web UI has following DOM structure:

Container

background header navigation content

background-header header-logo

background-navigation header-network-activity-
indicator

background-left loggedinas

background-right

Container div is a top-level one, it includes background, header, navigation, content divs. These divs and their
parts can be manipulated from the JavaScript code to represent the UI. However, FreeIPA gives an easier way
to accomplish this.

Facets
Facet is a smallest block of FreeIPA Web UI. When facet is defined, it has name, label, link to an entity it is part
of, and methods to create, show, load, and hide itself.

Entities
Entity is addressable group of facets. FreeIPA Web UI provides a declarative way of creating entities and defining
their facets based on JavaScript's syntax. Following example is a complete definition of a netgroup facet:

 1: IPA.netgroup = {};
 2:
 3: IPA.netgroup.entity = function(spec) {
 4: var that = IPA.entity(spec);
 5: that.init = function(params) {
 6: params.builder.search_facet({
 7: columns: [
 8: 'cn',
 9: 'description'
10:]
11: }).
12: details_facet({
13: sections: [
14: {
15: name: 'identity',
16: fields: [
17: 'cn',
18: {
19: factory: IPA.textarea_widget,

Extending
FreeIPA

16

20: name: 'description'
21: },
22: 'nisdomainname'
23:]
24: }
25:]
26: }).
27: association_facet({
28: name: 'memberhost_host',
29: facet_group: 'member'
30: }).
31: association_facet({
32: name: 'memberhost_hostgroup',
33: facet_group: 'member'
34: }).
35: association_facet({
36: name: 'memberuser_user',
37: facet_group: 'member'
38: }).
39: association_facet({
40: name: 'memberuser_group',
41: facet_group: 'member'
42: }).
43: association_facet({
44: name: 'memberof_netgroup',
45: associator: IPA.serial_associator
46: }).
47: standard_association_facets().
48: adder_dialog({
49: fields: [
50: 'cn',
51: {
52: factory: IPA.textarea_widget,
53: name: 'description'
54: }
55:]
56: });
57: };
58:
59: return that;
60: };
61:
62: IPA.register('netgroup', IPA.netgroup.entity);

This definition of a netgroup facet describes:

details facet a facet named 'identity' and three fields, cn, description,
and nisdomainname. In addition, description field is a
text area widget. This facet is used to display existing netgroup
information.

association facets number of facets, linking this one with others. In case of a netgroup,
netgroups are linked to facet group member via different attributes.
The definition also adds standard association facets defined in
entity.js.

adder dialog a dialog to create a new netgroup. The dialog has two fields: cn and
description where description is again a text area widget.

Extending
FreeIPA

17

Similarly to FreeIPA core framework, created entity needs to be registered to the Web UI via IPA.register()
method.

In order to add new entity to the Web UI, one can use extension.js. This file in /usr/share/ipa/html
is empty and provided specifically for this purpose.

As an example, let's define an entity 'Tank' corresponding to our aquarium tank:

 1: IPA.tank = {};
 2: IPA.tank.entity = function(spec) {
 3: var that = IPA.entity(spec);
 4: that.init = function(params) {
 5: details_facet({
 6: sections: [
 7: {
 8: name: 'identity',
 9: fields: [
10: 'species', 'height', 'width', 'depth'
11:]
12: }
13:]
14: }).
15: standard_association_facets().
16: adder_dialog({
17: fields: [
18: 'species', 'height', 'width', 'depth'
19:]
20: });
21: };
22: };
23:
24: IPA.register('tank', IPA.tank.entity);

Command line tools
As an alternative to Web UI, FreeIPA server can be controlled via command-line interface provided by the ipa
utility. This utility is operating under 'client' context and looks even simpler than Web UI's wsgi.py:

1: import sys
2: from ipalib import api, cli
3:
4: if __name__ == '__main__':
5: cli.run(api)

cli.run() is the central running point defined in ipalib/cli.py:

 1: # <cli.py code>
 2: cli_plugins = (
 3: cli,
 4: textui,
 5: console,
 6: help,
 7: show_mappings,
 8:)
 9:
10: def run(api):

Extending
FreeIPA

18

11: error = None
12: try:
13: (options, argv) = api.bootstrap_with_global_options(context='cli')
14: for klass in cli_plugins:
15: api.register(klass)
16: api.load_plugins()
17: api.finalize()
18: if not 'config_loaded' in api.env:
19: raise NotConfiguredError()
20: sys.exit(api.Backend.cli.run(argv))
21: except KeyboardInterrupt:
22: print ''
23: api.log.info('operation aborted')
24: except PublicError, e:
25: error = e
26: except StandardError, e:
27: api.log.exception('%s: %s', e.__class__.__name__, str(e))
28: error = InternalError()
29: if error is not None:
30: assert isinstance(error, PublicError)
31: api.log.error(error.strerror)
32: sys.exit(error.rval)

As with WSGI, api is bootstraped, though with a client context and using global options from /etc/ipa/
default.conf, and command line arguments. In addition to common plugins available in ipalib/plugins,
cli.py adds few command-line specific classes defined in the module itself:

cli a backend for executing from command line interface which does translation of
command line option names, basic verification of commands and fallback to show
help messages with help command, execution of the command, and translation
of the output to command-line friendly format if this is defined for the command.

textui a backend to nicely format output to stdout which handles conversion from
binary to base64, prints text word-wrapped to the terminal width, formats returned
complex values so that they can be easily understood by a human being.

>>> entry = {'name' : u'Test example', 'age' : u'100'}
>>> api.Backend.textui.print_entry(entry)
 age: 100
 name: Test example

console starts interactive Python console with FreeIPA commands

help generates help for every command and method of FreeIPA and structures it into
sections according to the registered FreeIPA objects.

>>> api.Command.help(u'user-show')
Purpose: Display information about a user.
Usage: ipa [global-options] user-show LOGIN [options]

Options:
-h, --help show this help message and exit
--rights Display the access rights of this entry (requires --all). See
 ipa man page for details.
--all Retrieve and print all attributes from the server. Affects
 command output.
--raw Print entries as stored on the server. Only affects output

Extending
FreeIPA

19

 format.

show_mappings displays mappings between command's parameters and LDAP attributes:

>>> api.Command.show_mappings(command_name=u"role-find")
Parameter : LDAP attribute
========= : ==============
name : cn
desc : description
timelimit : timelimit?
sizelimit : sizelimit?

Extending command line utility
Since ipa utility operates under client context, it loads all command plugins from ipalib/plugins. A simple
way to extend command line is to drop its plugin file into ipalib/plugins on the machine where ipa utility
is executed. Next time ipa is started, new plugin will be loaded together with all other plugins from ipalib/
plugins and commands provided by it will be added to the api.

Let's add a command line plugin that allows to ping a server and measures round trip time:

 1: from ipalib import frontend
 2: from ipalib import output
 3: from ipalib import _, ngettext
 4: from ipalib import api
 5: import time
 6:
 7: __doc__ = _("""
 8: Local extensions to FreeIPA commands
 9: """)
10:
11: class timed_ping(frontend.Command):
12: __doc__ = _('Ping remote FreeIPA server and measure round-trip')
13:
14: has_output = (
15: output.summary,
16:)
17: def run(self):
18: t1 = time.time()
19: result = self.api.Command.ping()
20: t2 = time.time()
21: summary = u"""Round-trip to the server is %f ms.
22: Server response is %s"""
23: return dict(summary=summary % ((t2-t1)*1000.0, result['summary']))
24:
25: api.register(timed_ping)

When this plugin code is placed into ipalib/plugins/extend-cli.py (name of the plugin file can be set
arbitrarily), ipa timed-ping will produce following output:

$ ipa timed-ping

Round-trip to the server is 286.306143 ms.
Server response is IPA server version 2.1.3GIT8a254ca. API version 2.13

Extending
FreeIPA

20

In this example we have created timed-ping command and overrode its run() method. Effectively, this
command will only work properly on the client. If the client is also FreeIPA server (all FreeIPA servers are enrolled
as FreeIPA clients), the same code will also be loaded by the server context and will be accessible to the Web
UI as well, albeit its usefulness will be questionable as it will be measuring the round-trip to the server from the
server itself.

File paths
Finally, it should be noted that depending on installed Python version and operating system, paths where plugins
are loaded from may differ. Usually Python extensions are placed in site-packages Python sub-directory. In
Fedora and RHEL distributions, this is /usr/lib/python<version>/site-packages. Thus, full path
to extend-cli.py would be /usr/lib/python<version>/site-packages/ipalib/plugins/
extend-cli.py.

On recent Fedora distribution, following paths are used:

Plugins Python module prefix File path

common ipalib/plugins /usr/lib/python2.7/site-packages/
ipalib/plugins

server ipaserver/plugins /usr/lib/python2.7/site-packages/
ipaserver/plugins

installer, updates ipaserver/install/plugins /usr/lib/python2.7/site-packages/
ipaserver/install/plugins

Next table explains use of contexts in FreeIPA applications:

Context Application Plugins Description

server wsgi.py common, server Main FreeIPA server,
server context

cli ipa common Command line interface,
client context

updates ipa-ldap-updater common, server, updates LDAP schema updater

Platform portability
Originally FreeIPA was created utilizing packages available in Fedora and RHEL distributions. During
configuration stages multiple system services need to be stopped and started again, scheduled to start after
reboot and re-configured. In addition, when operating system utilizing security measures to harden the server
setup, appropriate activities need to be done as well for preserving proper security contexts. As configuration
details, service names, security features and management tools differ substantially between various GNU/Linux
distributions and other operating systems, porting FreeIPA project's code to other environment has proven to be
problematic.

When Fedora project has decided to migrate to systemd for services management, FreeIPA packages for Fedora
needed to be updated as well, at the same time preserving support for older SystemV initialization scheme used
in older releases. This prompted to develop a 'platformization' support allowing to abstract services management
between different platforms.

FreeIPA 2.1.3 includes first cut of platformization work to support Fedora 16 distribution based on systemd. At
the same time, there is an effort to port FreeIPA client side code to Ubuntu distributions.

Platform portability in FreeIPA means centralization of code to manage system-provided services, authentication
setup, and means to manage security context and host names. It is going to be extended in future to cover other
areas as well, both client- and server-side.

Extending
FreeIPA

21

The code that implements platform-specific adaptation is placed under ipapython/platform. As of FreeIPA
2.1.3, there are two major "platforms" supported:

redhat Red Hat-based distributions utilizing SystemV init scripts such as Fedora 15 and RHEL6

fedora16 as name suggests, Fedora 16 and above, are supported by this platform module. It is based on
systemd system management tool and utilizes common code in ipapython/platform/
systemd.py. fedora16.py contains only differentiation required to cover Fedora 16-
specific implementation of systemd use, depending on changes to Dogtag, Tomcat6, and 389-
ds packages.

Each platform-specific adaptation should provide few basic building blocks:

AuthConfig class
AuthConfig class implements system-independent interface to configure system authentication resources. In
Red Hat systems this is done with authconfig(8) utility.

AuthConfig class is nothing more than a tool to gather configuration options and execute their processing. These
options then converted by an actual implementation to series of a system calls to appropriate utilities performing
real configuration.

FreeIPA expects names of AuthConfig's options to follow authconfig(8) naming scheme.
From FreeIPA code perspective, the authentication configuration should be done with use of
ipapython.services.authconfig:

 1: from ipapython import services as ipaservices
 2:
 3: auth_config = ipaservices.authconfig()
 4: auth_config.disable("ldap").\
 5: disable("krb5").\
 6: disable("sssd").\
 7: disable("sssdauth").\
 8: disable("mkhomedir").\
 9: add_option("update").\
10: enable("nis").\
11: add_parameter("nisdomain","foobar")
12: auth_config.execute()

The actual implementation can differ. redhat platform module builds up arguments to authconfig(8) tool and on
execute() method runs it with those arguments. Other systems will need to have processing of the arguments
done as defined by authconfig(8) manual page. This is, perhaps, biggest obstacle on porting FreeIPA client side
to the new platform.

PlatformService class
PlatformService class abstracts out an external process running on the system which is possible to
administer: start, stop, check its status, schedule for automatic startup, etc.

Services are used thoroughly through FreeIPA server and client install tools. There are several services
that are used especially often and they are selected to be accessible via Python properties of
ipapython.services.knownservices instance.

To facilitate more expressive way of working with often used services, ipapython.services module provides a
shortcut to access them by name via ipapython.services.knownservices.<service>. A typical code change looks
like this:

from ipapython import services as ipaservices

Extending
FreeIPA

22

....
- service.restart("dirsrv")
- service.restart("krb5kdc")
- service.restart("httpd")
+ ipaservices.knownservices.dirsrv.restart()
+ ipaservices.knownservices.krb5kdc.restart()
+ ipaservices.knownservices.httpd.restart()

Besides expression change this also makes more explicit to platform providers access to what services they have
to implement. Service names are defined in ipapython.platform.base.wellknownservices and represent definitive
names to access these services from FreeIPA code. Of course, platform provider should remap those names to
platform-specific ones -- for ipapython.platform.redhat provider mapping is identity.

Porting to a new platform may be hard as can be witnessed by this example: https://www.redhat.com/archives/
freeipa-devel/2011-September/msg00408.html

If there is doubt, always consult existing providers. redhat.py is canonical -- it represents the code which was
used throughout FreeIPA v2 development.

Enabling new platform provider
When support for new platform is implemented and appropriate provider is placed to ipapython/platform/,
it is time to enable its use by the FreeIPA. Since FreeIPA is supposed to be rolled out uniformly on multiple
clients and servers, best approach is to build and distribute software packages using platform-provided package
management tools.

With this in mind, platform code selection in FreeIPA is static and run at package production time. In order to select
proper platform provider, one needs to pass SUPPORTED_PLATFORM argument to FreeIPA's make process:

export SUPPORTED_PLATFORM=fedora16
Force re-generate of platform support
rm -f ipapython/services.py
make version-update
make IPA_VERSION_IS_GIT_SNAPSHOT=no all

version-update target in FreeIPA top-level Makefile will re-create ipapython/services.py file based on the
value of SUPPORTED_PLATFORM variable. By default this variable is set to redhat.

ipapython/services.py is generated using ipapython/service.py.in. In fact, there is only single
line gets replaced in the latter file at the last line:

authconfig is an entry point to platform-provided AuthConfig implementation
(instance of ipapython.platform.base.AuthConfig)
authconfig = None

knownservices is an entry point to known platform services
(instance of ipapython.platform.base.KnownServices)
knownservices = None

service is a class to instantiate ipapython.platform.base.PlatformService
service = None

restore context default implementation that does nothing
def restore_context_default(filepath):
 return

Restore security context for a path

https://www.redhat.com/archives/freeipa-devel/2011-September/msg00408.html
https://www.redhat.com/archives/freeipa-devel/2011-September/msg00408.html

Extending
FreeIPA

23

If the platform has security features where context is important, implement your own
version in platform services
restore_context = restore_context_default

Default implementation of backup and replace hostname that does nothing
def backup_and_replace_hostname_default(fstore, statestore, hostname):
 return

Backup and replace system's hostname
Since many platforms have their own way how to store system's hostname, this method must be
implemented in platform services
backup_and_replace_hostname = backup_and_replace_hostname_default

from ipapython.platform.SUPPORTED_PLATFORM import *

As last statement imports everything from the supported platform provider, all exposed methods and variables
above will be re-defined to platform-specific implementations. This allows to have FreeIPA framework use of
these services separated from the implementation of the platform.

The code in ipapython/services.py is going to grow over time when more parts of FreeIPA framework become
platform-independent.

